Abstract
The preparation and attractive performance of carbon-nanotube modified glassy-carbon (CNT/GC) electrodes for improved detection of purines, nucleic acids, and DNA hybridization are described. The surface-confined multiwall carbon-nanotube (MWCNT) facilitates the adsorptive accumulation of the guanine nucleobase and greatly enhances its oxidation signal. The advantages of CNT/GC electrodes are illustrated from comparison to the common unmodified glassy carbon, carbon paste and graphite pencil electrodes. The dramatic amplification of the guanine signal has been combined with a label-free electrical detection of DNA hybridization. Factors influencing the enhancement of the guanine signal are assessed and optimized. The performance characteristics of the amplified label-free electrochemical detection of DNA hybridization are reported in connection to measurements of nucleic-acid segments related to the breast-cancer BRCA1 gene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.