Abstract

Considering that simultaneous detection of xanthine (XA) and hypoxanthine (HXA) has been proved to be a reliable and feasible method for assessing fish freshness, a novel electrochemical sensing platform based on the ZnIn2S4/UiO-66-NH2 modified glassy carbon electrode (GCE) was constructed in this study for XA and HXA determination. X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR) were performed to exhibit the morphology and structural characteristics of ZnIn2S4/UiO-66-NH2. The Brunauer–Emmett–Teller (BET) displayed that the introduction of UiO-66-NH2 can improve the specific surface area of the hybrid. Besides, the electrochemical sensing performance of ZnIn2S4/UiO-66-NH2 was evaluated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). For simultaneously detecting XA and HXA, the fabricated electrochemical sensor shows wide linear ranges (0.025–40 µM and 0.3–40 µM) with low detection limits (0.0083 µM and 0.1 µM). This sensor also has 96–103% recovery in detecting XA and HXA content in large yellow croaker meat samples, demonstrating a promising application in the marine food industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.