Abstract

Chemically induced dimerization (CID) has been applied to study numerous biological processes and has important pharmacological applications. However, the complex multistep interactions under various physical constraints involved in CID impose a great challenge for the quantification of the interactions. Furthermore, the mechanical stability of the ternary complexes has not been characterized; hence, their potential application in mechanotransduction studies remains unclear. Here, we report a single-molecule detector that can accurately quantify almost all key interactions involved in CID and the mechanical stability of the ternary complex, in a label-free manner. Its application is demonstrated using rapamycin-induced heterodimerization of FRB and FKBP as an example. We revealed the sufficient mechanical stability of the FKBP/rapamycin/FRB ternary complex and demonstrated its utility in the precise switching of talin-mediated force transmission in integrin-based cell adhesions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call