Abstract
Excessive production of waste polyethylene terephthalate (PET) poses an ecological challenge, which necessitates developing technologies to extract the values from end-of-life PET. Upcycling has proven effective in addressing the low profitability of current recycling strategies, yet existing upcycling technologies operate under energy-intensive conditions. Here we report a cascade strategy to steer the transformation of PET waste into glycolate in an overall yield of 92.6% under ambient conditions. The cascade approach involves setting up a robust hydrolase with 95.6% PET depolymerization into ethylene glycol (EG) monomer within 12 h, followed by an electrochemical process initiated by a CO-tolerant Pd/Ni(OH)2 catalyst to convert the EG intermediate into glycolate with high Faradaic efficiency of 97.5%. Techno-economic analysis and life cycle assessment indicate that, compared with the widely adopted electrochemical technology that heavily relies on alkaline pretreatment for PET depolymerization, our designed enzymatic-electrochemical approach offers a cost-effective and low-carbon pathway to upgrade PET.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.