Abstract

Molecular interactions in live cells play an important role in both cellular functions and drug discovery. Current methods for measuring binding kinetics involve extracting the membrane protein and labeling, while the in situ quantification of molecular interaction with surface plasmon resonance (SPR) imaging mainly worked with fixed cells due to the micro-motion related noises of live cells. Here, an optical imaging method is presented to measure the molecular interaction with live red blood cells by tracking the nanometer membrane fluctuations. The membrane fluctuation dynamics are measured by tracking the membrane displacement during glycoprotein interaction. The data are analyzed with a thermodynamic model to determine the elastic properties of the cell observing reduced membrane fluctuations under fixatives, indicating cell fixations affect membrane mechanical properties. The binding kinetics of glycoprotein to several lectins are obtainedby tracking the membrane fluctuation amplitude changes on single live cells. The binding kinetics and strength of different lectins are quite different, indicating the glycoproteins expression heterogeneity in single cells. It is anticipated that the method will contribute to the understanding of mechanisms of cell interaction and communication, and have potential applications in the mechanical assessment of cancer or other diseases at the single-cell level, and screening of membrane protein targeting drugs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.