Abstract

Abstract Molecular interferometric imaging (MI2) is a label-free optical biosensor that combines common-path interferometry with shot-noise limited characteristics of a CCD array detector to detect protein binding to surfaces. In the metrology limit, it has achieved roughness-limited surface height resolution of 15 pm per 0.4 micron pixel, corresponding to a scaling mass sensitivity of 7 fg/mm, and a molecular resolution of about 15 IgG molecules per pixel. We have applied MI2 to detect cytokine interleukin-5 at a concentration detection limit of 50 pg/mL with a sandwich immunoassay. Real-time binding assays with MI2 enable the study of reaction kinetics, with a scaling mass sensitivity of 2 pg/mm under 7x magnification. Real-time MI2 measurements of anti-rabbit IgG against rabbit IgG were compared with results from surface plasmon resonance, with identical association rate constants at 5x103 M-1sec-1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call