Abstract

This paper describes a new label-free cell separation method using a magnetic repulsion force resulting from the magnetic susceptibility difference between cells and a paramagnetic buffer solution in a microchannel. The difference in the magnetic forces acting on different-sized cells is enhanced by adjusting the magnetic susceptibility of the surrounding medium, which depends on the concentration of paramagnetic salts, such as biocompatible gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA), dissolved therein. As a proof-of-concept demonstration, Gd-DTPA solutions at concentrations of 0-80 mM were applied to separate U937 cells from red blood cells (RBCs) and to distinguish two different-sized polystyrene (PS) beads (8 and 10 μm in diameter). By increasing the Gd-DTPA concentration from 0 to 40 mM, the separation resolution of PS beads was increased from 0.08 to 0.91. Additionally, we successfully achieved label-free separation of U937 cells from RBCs with >90% purity and 1 × 10(5) cells/h throughput using a 40 mM Gd-DTPA solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call