Abstract

A hydrothermal doublet system was drilled in a fault-related granitic reservoir in Cornwall. It targets the Porthtowan Fault Zone (PTF), which transects the Carnmenellis granite, one of the onshore plutons of the Cornubian Batholith in SW England. At 5058 m depth (TVD, 5275 m MD) up to 190 °C were reached in the dedicated production well. The injection well is aligned vertically above the production well and reaches a depth of 2393 m MD. As part of the design process for potential chemical stimulation of the open-hole sections of the hydrothermal doublet, lab-scale acidification experiments were performed on outcrop analogue samples from the Cornubian Batholith, which include mineralised veins. The experimental setup comprised autoclave experiments on sample powder and plugs, and core flooding tests on sample plugs to investigate to what degree the permeability of natural and artificial (saw-cut) fractures can be enhanced. All samples were petrologically and petrophysically analysed before and after the acidification experiments to track all changes resulting from the acidification. Based on the comparison of the mineralogical composition of the OAS samples with the drill cuttings from the production well, the results can be transferred to the hydrothermally altered zones around the faults and fractures of the PTF. Core Flooding Tests and Autoclave Experiments result in permeability enhancement factors of 4 to >20 and 0.1 to 40, respectively. Mineral reprecipitation can be avoided in the stimulated samples by sufficient post-flushing.

Highlights

  • The geothermal doublet at United Downs in Redruth, Cornwall, consists of the production well UD-1 and the injection well UD-2

  • The analysis of permeability enhancement by chemical treatment in the fractured Cornish granite is the prerequisite for an assessment of the potential effectivity of such stimulation in the pilot project United Downs Deep Geothermal Power (UDDGP)

  • Cuttings from the geothermal well UD-1 were used for a preliminary transfer of results from lab scale to the reservoir

Read more

Summary

Introduction

The geothermal doublet at United Downs in Redruth, Cornwall, consists of the production well UD-1 and the injection well UD-2. The reservoir rock is the fractured Carnmenellis granite, which is one of the onshore plutons comprising the Cornubian Batholith. It is characterised by a strong geothermal anomaly caused by radioactive decay of U, Th and K in the granite [2]. Since a sufficient reservoir temperature of ~190 ◦ C was reached in the production well, the limiting factor for the project is the hydraulic productivity of the reservoir For this reason, the analysis of permeability enhancement by chemical treatment in the fractured Cornish granite is the prerequisite for an assessment of the potential effectivity of such stimulation in the pilot project United Downs Deep Geothermal Power (UDDGP)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call