Abstract

The low-temperature fluorination of the n = 2 Ruddlesden-Popper phase La2SrCr2O7 yields La2SrCr2O7F2 via a topochemical fluorine insertion reaction. The structure-conserving nature of the fluorination reaction means that the chromium centers of the initial oxide phase retain an octahedral coordination environment in the fluorinated product, resulting in a material containing an extended array of apex-linked Cr(4+)O6 units. Typically materials containing networks of octahedrally coordinated Cr(4+) centers can only be prepared at high pressure; thus, the preparation of La2SrCr2O7F2 demonstrates that low-temperature topochemical reactions offer an alternative synthesis route to materials of this type. Neutron diffraction, magnetization, and μ(+)SR data indicate that La2SrCr2O7F2 undergoes a transition to an antiferromagnetic state below TN ≈ 140 K. The structure-property relations of this phase and other Cr(4+) oxide phases are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.