Abstract

The study of biomarkers related with ischaemic stroke is becoming increasingly more important as a way to further our knowledge of the pathophysiological changes that occur in cerebrovascular disease and to make it easier to reach an early diagnosis. Within this field, metabolomics offers a novel approach. The field is defined as the study of the small-molecule metabolites derived from cell metabolism. Its interest lies in the fact that, using a biological sample, it offers a snapshot of the cellular changes that are taking place. Today, the application of metabolomics requires a complex methodology that includes the application of laboratory separation techniques, multivariant statistical analyses and the use of bioinformatic tools. A number of studies conducted within the field of cardiovascular disease have focused on the application of this approach. In recent years there has been a steady growth in the number of publications referring to the metabolic changes related with ischaemic stroke, both in animal models and in patients. Metabolomics makes it possible to obtain the profiles of metabolites that identify patients who have suffered an ischaemic stroke. Furthermore, since studies have been carried out that relate certain metabolites with the most common causations of ischaemic stroke, metabolomics may eventually play a significant role in the study of cryptogenic stroke. The most exhaustive knowledge of the changes in the metabolic pathways involved in cerebrovascular disease could lay the foundations for the development of new neuroprotector strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call