Abstract
Glass/Ge and La/Ge stacked layers, 100 nm thick, were prepared via thermal evaporation under a vacuum pressure of 10−5 mbar. Structural analysis confirmed amorphous growth of Ge nanosheets. Optically coating Ge onto La improved light absorption, energy band gap, and dielectric responses. In addition, dielectric spectra fitting using Lorentz approach showed increased free electron density, plasmon frequency, and drift mobility (up to 1153 cm2/Vs) in Ge due to lanthanum presence. Moreover, LGA Schottky barrier devices (La/Ge/Au) exhibited tunneling-type current conduction with 0.815 eV barrier height and 40 nm width. Resistance spectra of these Schottky barriers displayed negative resistance near 0.40 GHz, while capacitance spectra showed resonance-antiresonance behavior. La/Ge and LGA interface can be utilized for optical receivers and microwave resonators in 5 G/6 G technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.