Abstract

IntroductionMicroRNA (miR) was implicated in the tumorigenesis of many types of cancer, but no study was conducted on the exact role of miR-133 in lung cancer. MethodsWe have identified miR-133 as a putative regulator of FOXQ1 expression, and investigated the potential involvement of miR-133 in the migration and invasion of lung cancer cells, as well as the underlying molecular mechanism. ResultsMiR-133 directly targeted and down-regulated FOXQ1 expression, which in turn reduced TGF-β level. MiR-133 was down-regulated in lung cancer cell lines A549 and HCC827, and its re-expression significantly inhibited the migration and invasion of the lung cancer cells. Further investigation revealed that this inhibition was caused by reversing the epithelial-mesenchymal transition, evidenced by miR-133 induced elevation of epithelial marker E-cadherin, and reduction of mesenchymal marker Vimentin. ConclusionsOur study is the first to identify miR-133 as a biomarker for lung cancer. It functions to down-regulate FOXQ1, and inhibit epithelial-mesenchymal transition, which antagonizes lung cancer tumorigenesis. Therefore our data support the role of miR-133 as a potential molecular therapeutic tool in treating lung cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.