Abstract

Tumor cells are known to undergo considerable metabolic reprogramming to meet their unique demands and drive tumor growth. At the same time, this reprogramming may come at a cost with resultant metabolic vulnerabilities. The small molecule L-2-hdroxyglutarate (L-2HG) is elevated in the most common histology of renal cancer. Similar to other oncometabolites, L-2HG has the potential to profoundly impact gene expression. Here, we demonstrate that L-2HG remodels amino acid metabolism in renal cancer cells through the combined effects on histone methylation and RNA N6-methyladenosine (m6A). The combined effects of L-2HG result in a metabolic liability that renders tumors cells reliant on exogenous serine to support proliferation, redox homeostasis, and tumor growth. In concert with these data, high L-2HG kidney cancers demonstrates reduced expression of multiple serine biosynthetic enzymes. Collectively, our data indicate that high L-2HG renal tumors could be specifically targeted by strategies that limit serine availability to tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.