Abstract
We obtain analytic solutions for the one-dimensional Dirac equation with the Morse potential as an infinite series of square integrable functions. These solutions are for all energies, the discrete as well as the continuous. The elements of the spinor basis are written in terms of the confluent hypergeometric functions. They are chosen such that the matrix representation of the Dirac–Morse operator for continuous spectrum (i.e., for scattering energies larger than the rest mass) is tridiagonal. Consequently, the wave equation results in a three-term recursion relation for the expansion coefficients of the wavefunction. The solution of this recursion relation is obtained in terms of the continuous dual Hahn orthogonal polynomials. On the other hand, for the discrete spectrum (i.e., for bound states with energies less than the rest mass) the spinor wave functions result in a diagonal matrix representation for the Dirac–Morse Hamiltonian.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have