Abstract

Modification of the chirality of a single amino acid residue within a peptide chain appears to be novel additional mechanism leading to structural and functional diversification of eukaryotic bioactive peptides. This phenomenon has been studied at the cellular level in a neuroendocrine organ which elaborates a mixture of diastereoisomers of a 72-residue neuropeptide, crustacean hyperglycemic hormone. For the first time, amino acid isomerization has been shown to occur in the perikarya of fully specialized neurosecretory cells, as a late step of the maturation of the hyperglycemic hormone precursor and after propeptide cleavage. The specificity and efficiency of this phenomenon indicates the existence of a new enzyme family involved in the biogenesis of peptide hormones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.