Abstract

This article is concerned with the issue of l2 - l∞ state estimation for nonlinear coupled networks, where the variation of coupling mode is governed by a set of switching signals satisfying a persistent dwell-time property. To solve the problem of data collisions in a constrained communication network, the round-robin protocol, as an important scheduling strategy for orchestrating the transmission order of sensor nodes, is introduced. Redundant channels with signal quantization are used to improve the reliability of data transmission. The main purpose is to determine an estimator that can guarantee the exponential stability in mean square sense and an l2 - l∞ performance level of the estimation error system. Based on the Lyapunov method, sufficient conditions for the addressed problem are established. The desired estimator gains can be obtained by addressing a convex optimization case. The correctness and availability of the developed approach are finally explained via two illustrative examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.