Abstract

Many changes related to aging at the cellular level may be due to the physiological condition of mitochondria. One of the most common types of damage of mtDNA is the so-called “common deletion” referring to a deletion of 4977 base pairs. In the skin cells this phenomenon probably is caused by oxidative damage of mtDNA induced by UV. The present study was aimed at evaluating the effect of the antioxidant l-ergothioneine on UV-induced damage in skin cells. The effect of l-ergothioneine on the reduced glutathione level was studied. The presence of the “common deletion” in human fibroblasts irradiated with UVA and treated with l-ergothioneine was evaluated by a polymerase chain reaction. We have demonstrated that l-ergothioneine enhanced the level of reduced glutathione and protected cells from the induction of a photoaging-associated mtDNA “common deletion”. In view of our results, l-ergothioneine could be an effective skin care and anti-photoaging ingredient.

Highlights

  • Ultraviolet irradiation is one of the most important environmental factors in the development of a number of skin conditions, ranging from photoaging to cancer

  • Our studies showed that L-ergothioneine at the 20 μM concentration increased the reduced glutathione (GSH) level both in control and UVB irradiated

  • The objective of our study was to evaluate the effect of L-ergothioneine on the occurrence of Mitochondria contain their own DNA (mtDNA) “common deletion” in UV-irradiated human primary fibroblasts obtained from various donors

Read more

Summary

Introduction

Ultraviolet irradiation is one of the most important environmental factors in the development of a number of skin conditions, ranging from photoaging to cancer. There are many theories of aging and a number of them encompass the role of mitochondria in this process. Mitochondria are responsible for producing approximately 90% of the cellular energy in the process of oxidative phosphorylation where electrons from NADH and FADH2 are transferred to oxygen. This generates a significant amount of reactive oxygen species (ROS). Mitochondria are able to counteract the production of ROS with antioxidant defense systems which can detoxify the amount of ROS produced, some ROS do evade these processes and are able to damage mitochondrial

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.