Abstract
BackgroundIn T cells, the Kv1.3 and the KCa3.1 potassium channels regulate the membrane potential and calcium homeostasis. Notably, during TEM cell activation, the number of Kv1.3 channels on the cell membrane dramatically increases. Kv1.3 blockade results in inhibition of Ca2+ signaling in TEM cells, thus eliciting an immunomodulatory effect. Among the naturally occurring peptides, the Vm24 toxin from the Mexican scorpion Vaejovis mexicanus is the most potent and selective Kv1.3 channel blocker known, which makes it a promissory candidate for its use in the clinic. We have shown that addition of Vm24 to TCR-activated human T cells inhibits CD25 expression, cell proliferation and reduces delayed-type hypersensitivity reactions in a chronic inflammation model. Here, we used the Vm24 toxin as a tool to investigate the molecular events that follow Kv1.3 blockade specifically on human CD4+ TEM cells as they are actively involved in inflammation and are key mediators of autoimmune diseases.MethodsWe combined cell viability, activation, and multiplex cytokine assays with a proteomic analysis to identify the biological processes affected by Kv1.3 blockade on healthy donors CD4+ TEM cells, following TCR activation in the presence or absence of the Vm24 toxin.ResultsThe peptide completely blocked Kv1.3 channels currents without impairing TEM cell viability, and in response to TCR stimulation, it inhibited the expression of the activation markers CD25 and CD40L (but not that of CD69), as well as the secretion of the pro-inflammatory cytokines IFN-γ and TNF and the anti-inflammatory cytokines IL-4, IL-5, IL-9, IL-10, and IL-13. These results, in combination with data from the proteomic analysis, indicate that the biological processes most affected by the blockade of Kv1.3 channels in a T cell activation context were cytokine-cytokine receptor interaction, mRNA processing via spliceosome, response to unfolded proteins and intracellular vesicle transport, targeting the cell protein synthesis machinery.ConclusionsThe Vm24 toxin, a highly specific inhibitor of Kv1.3 channels allowed us to define downstream functions of the Kv1.3 channels in human CD4+ TEM lymphocytes. Blocking Kv1.3 channels profoundly affects the mRNA synthesis machinery, the unfolded protein response and the intracellular vesicle transport, impairing the synthesis and secretion of cytokines in response to TCR engagement, underscoring the role of Kv1.3 channels in regulating TEM lymphocyte function.
Highlights
In T cells, the Kv1.3 and the KCa3.1 potassium channels regulate the membrane potential and calcium homeostasis
To achieve a deeper understanding of the role of Kv1.3 ion channels in the immune response, to identify the biological processes affected by Kv1.3 blockade, and to better characterize the potential pharmacological use of the Vm24 peptide, we evaluated the cytokine secretion and proteomic profiles of CD4+ Effector memory T cells (TEM) cells isolated from healthy donors following T cell receptor (TCR) activation, in the presence or absence of the Vm24 toxin
As these results were obtained with total T cells, here we evaluated the capacity of the Vm24 peptide to inhibit the CD4+ TEM cells function
Summary
In T cells, the Kv1.3 and the KCa3.1 potassium channels regulate the membrane potential and calcium homeostasis. We used the Vm24 toxin as a tool to investigate the molecular events that follow Kv1.3 blockade on human CD4+ TEM cells as they are actively involved in inflammation and are key mediators of autoimmune diseases. Upon activation, the number of Kv1.3 channels of effector memory T (TEM) cells dramatically increases, while that of KCa3.1 channels remains constant, underscoring a role of Kv1.3 channels in the decision making process of TEM lymphocytes [6]. TEM lymphocytes rapidly and copiously produce and release inflammatory and cytotoxic mediators such as IFN-γ, IL-4, and perforin They lack CCR7 and CD62L, two receptors involved in homing to the lymph nodes, but the expression of the receptors for inflammatory cytokines CCR1, CCR3 and, CCR5 allows them to recirculate between the blood and inflammatory foci [7,8,9,10,11]. Autoreactive cells found in multiple sclerosis, rheumatoid arthritis and type I diabetes mellitus lesions exhibit a TEM phenotype and are key mediators in the pathogenesis of these autoimmune diseases [6, 16], stressing the need for restraining these cells
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.