Abstract

Kudoa septempunctata is a myxosporean parasite that infects the trunk muscles of olive flounder (Paralichthys olivaceus) and has been reported to cause foodborne illnesses in humans. However, the molecular mechanisms underlying K. septempunctata spore toxicity remain largely unknown. In this study, the gastroenteropathy of K. septempunctata was examined in human colon adenocarcinoma cells as well as experimental mice inoculated with spores. We found that K. septempunctata decreased transepithelial resistance and disrupted epithelial tight junctions by deleting ZO-1 in Caco-2 monolayers. Additionally, serotonin (5-HT), an emetic neurotransmitter, was increased in K. septempunctata-inoculated cells. In vivo, K. septempunctata spores induced diarrhea in suckling mice (80% in ddY and 70% in ICR mice), with a minimum provocative dose of 2 × 105 K. septempunctata spores. In house musk shrews, K. septempunctata induced emesis within 1 h and induced serotonin secretion in the intestinal epithelium. In conclusion, K. septempunctata may induce diarrhea and emesis by increasing intestinal permeability and serotonin secretion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call