Abstract
In this study, we inter-compared observed Ku-, X- and C-band microwave backscatter from saline 14 cm, 8 cm, and 4 cm snow covers on smooth first-year sea ice. A Ku-, X- and C-band surface-borne polarimetric microwave scatterometer system was used to measure fully-polarimetric backscatter from the three snow covers, near-coincident with corresponding in situ snow thermophysical measurements. The study investigated differences in co-polarized backscatter observations from the scatterometer system for all three frequencies, modeled penetration depths, utilized co-pol ratios, and introduced dual-frequency ratios to discriminate dominant polarization-dependent frequencies from these snow covers. Results demonstrate that the measured co-polarized backscatter magnitude increased with decreasing snow thickness for all three frequencies, owing to stronger gradients in snow salinity within thinner snow covers. The innovative dual-frequency ratios suggest greater sensitivity of Ku-band microwaves to snow grain size as snow thickness increases and X-band microwaves to snow salinity changes as snow thickness decreases. C-band demonstrated minimal sensitivity to changes in snow salinities. Our results demonstrate the influence of salinity associated dielectric loss, throughout all layers of the three snow covers, as the governing factor affecting microwave backscatter and penetration from all three frequencies. Our “plot-scale” observations using co-polarized backscatter, co-pol ratios and dual-frequency ratios suggest the future potential to up-scale our multi-frequency approach to a “satellite-scale” approach, towards effective development of snow geophysical and thermodynamic retrieval algorithms on smooth first-year sea ice.
Highlights
Introduction and BackgroundArctic sea ice extent, age, volume, and thickness have undergone rapid decrease during the past three decades, with the Arctic Ocean on a path to a new climate regime influenced by a thinner sea ice cover and being more and more dominated by first-year ice (FYI) [1,2]
Snow salinity controls the penetration depth, and it influences the partitioning between scattering at interfaces, i.e. surface scattering and volume scattering by modulating the absorption of both the incident and the reflected/scattered microwave radiation
HH measured at NR for the 4 cm snow cover are ~5 dB
Summary
Age, volume, and thickness have undergone rapid decrease during the past three decades, with the Arctic Ocean on a path to a new climate regime influenced by a thinner sea ice cover and being more and more dominated by first-year ice (FYI) [1,2]. Snow salinity controls the penetration depth, and it influences the partitioning between scattering at interfaces, i.e. surface scattering (air/snow, within-snow at density gradients, snow/ice) and volume scattering by modulating the absorption of both the incident and the reflected/scattered microwave radiation. This in turn alters dielectric and thermodynamic properties of the snow cover, which in turn could lead to uncertainties in snow thickness estimations on FYI.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have