Abstract

We discuss the use of Krylov subspace methods with regard to the problem of model order reduction. The focus lies on bilinear control systems, a special class of nonlinear systems, which are closely related to linear systems. While most existent approaches are based on series expansions around zero, we will extend the underlying ideas to a more general context and show that there exist several ways to reduce bilinear systems. Besides, we will briefly address the problem of stability preserving model reduction and further explain the benefit of using two-sided projection methods. By means of some numerical examples, we will illustrate the performance of the presented reduction methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.