Abstract

<abstract><p>In this paper, we study the results of fixed points for the operator equations of type $ x = H(\digamma x, x) $ using the idea of measure of noncompactness and assuming that the operator $ \digamma $ is $ k $ -set contractive (strictly $ k $ -set contractive, or a continuous) and the family $ \{H(u, .):u\} $ is equiexpansive or equicontractive. The obtained results are generalization of Krasnoselskii type fixed point results. Some examples are given to elaborate new concepts. We use the main result to find the existence of solutions for the stationary radiative transfer equation in a channel. We demonstrate our theory with an example by comparison of an approximate solution with the exact solution.</p></abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.