Abstract
AbstractUser preference information plays an important role in knowledge graph-based recommender systems, which is reflected in users having different preferences for each entity–relation pair in the knowledge graph. Existing approaches have not modeled this fine-grained user preference feature well, as affecting the performance of recommender systems. In this paper, we propose a deep knowledge preference-aware reinforcement learning network (KPRLN) for the recommendation, which builds paths between user’s historical interaction items in the knowledge graph, learns the preference features of each user–entity–relation and generates the weighted knowledge graph with fine-grained preference features. First, we proposed a hierarchical propagation path construction method to address the problems of the pendant entity and long path exploration in the knowledge graph. The method expands outward to form clusters centered on items and uses them to represent the starting and target states in reinforcement learning. With the iteration of clusters, we can better learn the pendant entity preference and explore farther paths. Besides, we design an attention graph convolutional network, which focuses on more influential entity–relation pairs, to aggregate user and item higher order representations that contain fine-grained preference features. Finally, extensive experiments on two real-world datasets demonstrate that our method outperforms other state-of-the-art baselines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.