Abstract

With advances in manycore and accelerator architectures, the high performance and embedded spaces are rapidly converging. Emerging architectures feature different forms of parallelism. The Polyhedral Processes Networks (PPNs) are a proven model of choice for automated generation of pipeline and task parallel programs from sequential source code, however data parallelism is not addressed. In this paper, we present asystematic approach for identification and extraction of fine grain data parallelism from the PPN specification. The approach is implemented in a tool, called kpn2gpu, which produces fine-grain data parallel CUDA kernels for graphics processing units (GPUs). First experiments indicate that generated applications have a potential to exploit different forms of parallelism provided by the architecture and that kernels feature a highly regular structure that allows subsequent optimizations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.