Abstract

We present a sharpened version of the Cohen–Gabber theorem for equicharacteristic, complete local domains $(A,\mathfrak{m},k)$ with algebraically closed residue field and dimension $d>0$. Namely, we show that for any prime number $p$, $\operatorname{Spec}A$ admits a dominant, finite map to $\operatorname{Spec}k[[X_{1},\ldots,X_{d}]]$ with generic degree relatively prime to $p$. Our result follows from Gabber’s original theorem, elementary Hilbert–Samuel multiplicity theory, and a “factorization” of the map induced on the Grothendieck group $\mathbf{G}_{0}(A)$ by the Koszul complex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.