Abstract

We introduce here the notion of Koszul duality for monoids in the monoidal category of species with respect to the ordinary product. To each Koszul monoid we associate a class of Koszul algebras in the sense of Priddy, by taking the corresponding analytic functor. The operad A M of rooted trees enriched with a monoid M was introduced by the author. One special case of that is the operad of ordinary rooted trees, called in the recent literature the permutative non-associative operad. We prove here that A M is Koszul if and only if the corresponding monoid M is Koszul. In this way we obtain a wide family of Koszul operads, extending a recent result of Chapoton and Livernet, and providing an interesting link between Koszul duality for associative algebras and Koszul duality for operads.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.