Abstract
We study the Hopf structure of a class of dual operator algebras corresponding to certain semigroups. This class of algebras arises in dilation theory, and includes the noncommutative analytic Toeplitz algebra and the multiplier algebra of the Drury–Arveson space, which correspond to the free semigroup and the free commutative semigroup respectively. The preduals of the algebras in this class naturally form Hopf (convolution) algebras. The original algebras and their preduals form (non-self-adjoint) dual Hopf algebras in the sense of Effros and Ruan. We study these algebras from this perspective, and obtain a number of results about their structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.