Abstract

Let \(\Omega \subset \mathbb {R}^n\), \(n\ge 2\), be a bounded domain satisfying the separation property. We show that the following conditions are equivalent: (i) \(\Omega \) is a John domain; (ii) for a fixed \(p\in (1,\infty )\), the Korn inequality holds for each \(\mathbf {u}\in W^{1,p}(\Omega ,\mathbb {R}^n)\) satisfying \(\int _\Omega \frac{\partial u_i}{\partial x_j}-\frac{\partial u_j}{\partial x_i}\,dx=0\), \(1\le i,j\le n\), $$\begin{aligned} \Vert D\mathbf {u}\Vert _{L^p(\Omega )}\le C_K(\Omega , p)\Vert \epsilon (\mathbf {u})\Vert _{L^p(\Omega )}; \qquad (K_{p}) \end{aligned}$$ (ii’) for all \(p\in (1,\infty )\), \((K_p)\) holds on \(\Omega \); (iii) for a fixed \(p\in (1,\infty )\), for each \(f\in L^p(\Omega )\) with vanishing mean value on \(\Omega \), there exists a solution \(\mathbf {v}\in W^{1,p}_0(\Omega ,\mathbb {R}^n)\) to the equation \(\mathrm {div}\,\mathbf {v}=f\) with $$\begin{aligned} \Vert \mathbf {v}\Vert _{W^{1,p}(\Omega ,\mathbb {R}^n)}\le C(\Omega , p)\Vert f\Vert _{L^p(\Omega )};\qquad (DE_p) \end{aligned}$$ (iii’) for all \(p\in (1,\infty )\), \((DE_p)\) holds on \(\Omega \). For domains satisfying the separation property, in particular, for finitely connected domains in the plane, our result provides a geometric characterization of the Korn inequality, and gives positive answers to a question raised by Costabel and Dauge (Arch Ration Mech Anal 217(3):873–898, 2015) and a question raised by Russ (Vietnam J Math 41:369–381, 2013). For the plane, our result is best possible in the sense that, there exist infinitely connected domains which are not John but support Korn’s inequality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.