Abstract
We develop a method to decompose functions with mean value zero that are defined on a (possibly unbounded) John domain into a countable sum of functions with mean value zero and support in cubes or balls. This method enables us to generalize results known for simple domains to the class of John domains and domains satisfying a certain chain condition. As applications we present the solvability of the divergence equation divu = f, the negative norm theorem, Korn's inequality, Poincare's inequality and a localized version of the Feerman-Stein inequality. We present the results for weighted Lebesgue spaces and Orlicz spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annales Academiae Scientiarum Fennicae Mathematica
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.