Abstract

The Kondo effect, a widely studied phenomenon in which the scattering of conduction electrons by magnetic impurities increases as the temperature T is lowered, depends strongly on the density of states at the Fermi energy. It has been predicted by theory that magnetic impurities on free-standing monolayer graphene exhibit the Kondo effect and that control of the density of states at the Fermi level by external means can be used to switch the effect on and off. However, though transport data for Co adatoms on graphene monolayers on several substrates have been reported, there exists no evidence for a Kondo effect. Here we probe the role of the substrate on the Kondo effect of Co on graphene by combining low-temperature scanning tunneling microscopy and spectroscopy measurements with density functional theory calculations. We use a Ru(0001) substrate that is known to cause graphene to ripple, yielding a moiré superlattice. The experimental data show a sharp Kondo resonance peak near the Fermi energy from only Co adatoms at the edge of atop regions of the moiré pattern. The theoretical results show that the variation of the distance from the graphene to the Ru substrate, which controls the spin polarization and local density of states at the Fermi energy, is the key factor for the appearance of the Kondo resonance. The results suggest that rippling of graphene by suitable substrates is an additional lever for tuning and selectively switching the appearance of the Kondo effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.