Abstract
The Kolakoski sequence $S$ is the unique element of \(\left\lbrace 1,2 \right\rbrace^{\omega}\) starting with 1 and coinciding with its own run length encoding. We use the parity of the lengths of particular subclasses of initial words of \(S\) as a unifying tool to address the links between the main open questions - recurrence, mirror/reversal invariance and asymptotic density of digits. In particular we prove that recurrence implies reversal invariance, and give sufficient conditions which would imply that the density of 1s is \(\frac{1}{2}\).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.