Abstract

Non-derivatizing, high-efficiency and low-toxicity solvents are important for studying the dissolution behavior and potential applications of starch. In this study, we investigated the starch dissolution mechanism and molecular conformation in KOH/thiourea aqueous solutions and compared these with KOH/urea and KOH aqueous solutions. Solubility analysis revealed that the KOH/thiourea solution demonstrates a better ability to dissolve corn starch than KOH/urea and KOH solutions. Rheological behavior and dynamic and static light scattering indicated that starch is stable in KOH/thiourea solution and exists as a regular star structure. Fourier transform infrared spectroscopy, 13C NMR, and molecular dynamics simulations indicated that hydrated K+ and OH− destroy the strong starch hydrogen bond interactions; thiourea hydrate self-assembles into a shell surrounding the starch-KOH complex through interaction with KOH, whereas there is no direct strong interaction between urea and KOH. Therefore, adding thiourea to a KOH solution can promote dissolution and prevent self-aggregation of the starch chain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.