Abstract
Therapeutic targeting of folate biosynthetic pathway has recently been explored as a viable strategy in the treatment of tuberculosis. The bioactive metabolite substrate of Para-amino salicyclic acid (PAS-M) reportedly dual-targets dihydrofolate reductase (DHFR) and flavin-dependent thymidylate synthase (FDTS), two essential enzymes in folate biosynthetic pathway. However, the molecular mechanisms and structural dynamics of this dual inhibitory activity of the PAS-M remain elusive. Molecular dynamics simulations revealed that binding of PAS-M towards DHFR is characterized by a recurrence of strong conventional hydrogen bond interactions between a peculiar DHFR binding site residue (Asp27) and the 2-amino-decahydropteridin-4-ol group of PAS-M. Similarly, the binding of PAS-M towards FDTS also involved consistent strong conventional hydrogen bond interactions between some specific residues (Tyr101, Arg172, Thr4, Gln103, Arg87 and Gln106) and, the 2-amino-decahydropteridin-4-ol group, thus establishing the cruciality of the group. Structural dynamics of the bound complexes of both enzymes revealed that, upon binding, PAS-M is anchored at the entrance of hydrophobic pockets by strong hydrogen bond interactions while the rest of the structure gains access to deeper hydrophobic residues to engage in favorable interactions. Further analysis of atomistic changes of both enzymes showed increased C-α atom deviations as well as an increase C-α atoms radius of gyration consistent with structural disorientations. These conformational changes possibly interfered with the biological functions of the enzymes and hence their inhibition as experimentally reported. Structural Insights provided could open up a novel paradigm of structure-based design of multi-targeting inhibitors of biological targets in the folate biosynthetic pathway toward tuberculosis therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.