Abstract
We present some known-key distinguishers for a type-1 Feistel scheme with a permutation as the round function. To be more specific, the 29-round known-key truncated differential distinguishers are given for the 256-bit type-1 Feistel scheme with an SP (substitution-permutation) round function by using the rebound attack, where the S -boxes have perfect differential and linear properties and the linear diffusion layer has a maximum branch number. For two 128-bit versions, the distinguishers can be applied on 25-round structures. Based on these distinguishers, we construct near-collision attacks on these schemes with MMO (Matyas-Meyer-Oseas) and MP (Miyaguchi-Preneel) hashing modes, and propose the 26-round and 22-round near-collision attacks for two 256-bit schemes and two 128-bit schemes, respectively. We apply the near-collision attack on MAME and obtain a 26-round near-collision attack. Using the algebraic degree and some integral properties, we prove the correctness of the 31-round known-key integral distinguisher proposed by Sasaki et al. We show that if the round function is a permutation, the integral distinguisher is suitable for a type-1 Feistel scheme of any size.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have