Abstract

The uncertain capacitated arc routing problem (UCARP) is an NP-hard combinatorial optimization problem with a wide range of applications in logistics domains. Genetic programming (GP) hyper-heuristic has been successfully applied to evolve routing policies to effectively handle the uncertain environment in this problem. The real world usually encounters different but related instances due to events, such as season change and vehicle breakdowns, and it is desirable to transfer knowledge gained from solving one instance to help solve another related one. However, the solutions found by the GP process can lack diversity, and the existing methods use the transferred knowledge mainly during initialization. Thus, they cannot sufficiently handle the change from the source to the target instance. To address this issue, we develop a novel knowledge transfer GP with an auxiliary population. In addition to the main population for the target instance, we initialize an auxiliary population using the transferred knowledge and evolve it alongside the main population. We develop a novel scheme to carefully exchange the knowledge between the two populations, and a surrogate model to evaluate the auxiliary population efficiently. The experimental results confirm that the proposed method performed significantly better than the state-of-the-art GP approaches for a wide range of uncertain arc routing instances, in terms of both final performance and convergence speed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.