Abstract

Uncertain Capacitated Arc Routing Problem (UCARP) is an NP-hard optimisation problem with many applications in logistics domains. Genetic Programming (GP) is capable of evolving routing policies to handle the uncertain environment of UCARP. There are many different but related UCARP domains in the real world to be solved (e.g. winter gritting and waste collection for different cities). Instead of training a routing policy for each of them, we can use the multi-task learning paradigm to improve the training effectiveness by sharing the common knowledge among the related UCARP domains. Previous studies showed that GP population for solving UCARP loses diversity during its evolution, which decreases the effectiveness of knowledge sharing. To address this issue, in this work we propose a novel multi-task GP approach that takes the uniqueness of transferable knowledge, as well as its quality, into consideration. Additionally, the transferred knowledge is utilised in a manner that improves diversity. We investigated the performance of the proposed method with several experimental studies and demonstrated that the designed knowledge transfer mechanism can significantly improve the performance of GP for solving UCARP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.