Abstract

Sequential recommendation is the mainstream approach in the field of click-through-rate (CTR) prediction for modeling users’ behavior. This behavior implies the change of the user’s interest, and the goal of sequential recommendation is to capture this dynamic change. However, existing studies have focused on designing complex dedicated networks to capture user interests from user behavior sequences, while neglecting the use of auxiliary information. Recently, knowledge graph (KG) has gradually attracted the attention of researchers as a structured auxiliary information. Items and their attributes in the recommendation, can be mapped to knowledge triples in the KG. Therefore, the introduction of KG to recommendation can help us obtain more expressive item representations. Since KG can be considered a special type of graph, it is possible to use the graph neural network (GNN) to propagate the rich information contained in the KG into the item representation. Based on this idea, this paper proposes a recommendation method that uses KG as auxiliary information. The method first propagates the knowledge information in the KG using GNN to obtain a knowledge-rich item representation. Then the temporal features in the item sequence are extracted using a transformer for CTR prediction, namely the Knowledge Graph-Aware Deep Interest Extraction network (KGDIE). To evaluate the performance of this model, we conducted extensive experiments on two real datasets with different scenarios. The results showed that the KGDIE method could outperform several state-of-the-art baselines. The source code of our model is available at https://github.com/gylgyl123/kgdie.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.