Abstract

New approaches that allow a logical link to be established between body parameters and the dynamics of locomotion are attracting increasing interest. We propose a method that obtains knowledge from a biomechanical system. The speed of human gait transition from walking to running was investigated. Employing soft clustering and fuzzy logic principles, we derived the most influential body parameters and logical rules between them which define the preferred transition speed (PTS). The first-order PTS determinants are mass, tibial height and thigh length, while those of the second order are lateral malleolus height and body height. Four logical rules allow PTS values to be predicted with an accuracy of 0.03 m/s when using first-order parameters, and of 0.01 m/s when additionally second-order parameters are included. Compared to previously published studies, these accuracies are the best obtained to date, making our method a promising tool for practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.