Abstract

How and why do molecules tangle or thread? Investigations of molecular knots (knotanes) may shed some light on the mechanisms of (supra)molecular templation and the folding of molecules that result in intertwining. The topological chirality of these fascinating molecules leads to new types of isomerism and paves the way to nanosized molecular motors. Their preparation and derivatization makes high demands on modern synthetic methods and analytical separation since molecular knots are formed in a more or less planned design based on metal coordination or hydrogen-bonding patterns. This Review describes the development of templation techniques for the synthesis of knotanes and their chiral resolution as well as their selective functionalization and use as building blocks in the synthesis of higher knotane assemblies. Such assemblies can possess linear, branched, or even macrocyclic structures which, on the one hand, introduce unprecedented isomeric compositions that arise from multiple topological stereogenic units and, on the other, define new types of artificial macromolecules beyond polymers and dendritic species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.