Abstract

When introduced into a novel environment, mammals establish in it a preferred place marked by the highest number of visits and highest cumulative time spent in it. Examination of exploratory behavior in reference to this “home base” highlights important features of its organization. It might therefore be fruitful to search for other types of marked places in mouse exploratory behavior and examine their influence on overall behavior.Examination of path curvatures of mice exploring a large empty arena revealed the presence of circumscribed locales marked by the performance of tortuous paths full of twists and turns. We term these places knots, and the behavior performed in them—knot-scribbling. There is typically no more than one knot per session; it has distinct boundaries and it is maintained both within and across sessions. Knots are mostly situated in the place of introduction into the arena, here away from walls. Knots are not characterized by the features of a home base, except for a high speed during inbound and a low speed during outbound paths. The establishment of knots is enhanced by injecting the mouse with saline and placing it in an exposed portion of the arena, suggesting that stress and the arousal associated with it consolidate a long-term contingency between a particular locale and knot-scribbling.In an environment devoid of proximal cues mice mark a locale associated with arousal by twisting and turning in it. This creates a self-generated, often centrally located landmark. The tortuosity of the path traced during the behavior implies almost concurrent multiple views of the environment. Knot-scribbling could therefore function as a way to obtain an overview of the entire environment, allowing re-calibration of the mouse's locale map and compass directions. The rich vestibular input generated by scribbling could improve the interpretation of the visual scene.

Highlights

  • When introduced into a novel environment rats establish in it a preferred place characterized by the highest frequency of visits, by the highest cumulative dwell time, by an upper bound on the number of stops per roundtrip performed from it, by low outbound trajectory speed and high inbound trajectory speed, with the speed relationship reversed in later stages of the session [1,2]

  • When mice used as a control group in another study were injected with saline and placed in the exposed portion of a large open field arena, they established in it preferred places, typically not more than one per session, which they visited sporadically, tracing in them a tortuous path full of twists, turns, and bends that looked like a knot

  • Until recently the exploration of an open field by rodents has been considered to be largely stochastic. This behavior is being gradually deciphered, revealing reference places called home bases, from which the animals perform roundtrips into the environment, tracing well-trodden paths whose features contribute to our understanding of navigation, locational memory, cognition, and emotion-related behavior

Read more

Summary

Introduction

When introduced into a novel environment rats establish in it a preferred place characterized by the highest frequency of visits, by the highest cumulative dwell time, by an upper bound on the number of stops per roundtrip performed from it, by low outbound trajectory speed and high inbound trajectory speed, with the speed relationship reversed in later stages of the session [1,2]. When mice used as a control group in another study were injected with saline and placed in the exposed portion of a large open field arena, they established in it preferred places, typically not more than one per session, which they visited sporadically, tracing in them a tortuous path full of twists, turns, and bends that looked like a knot. We termed these places knots, and the behavior performed in them - knot-scribbling. In the present study we describe the full-blown knot phenomenon in saline-injected mice and only verify the existence of knots in intact mice

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call