Abstract
Zinc (Zn) is an essential trace mineral that is required for plant growth and development. A number of protein transporters, which are involved in Zn uptake, translocation and distribution, are finely regulated to maintain Zn homeostasis in plant. In this study, we functionally characterized an ATP-binding cassette (ABC) transporter gene, OsPDR7, which is involved in Zn homeostasis. OsPDR7 encodes a plasma membrane-localized protein that is expressed mainly in the exodermis and xylem in the rice root. ospdr7 mutants resulted in higher Zn accumulation compared with the wild type. Heterogeneous expression of OsPDR7 in a yeast mutant rescued the Zn-deficiency phenotype, implying transport activity of OsPDR7 to Zn in yeast. However, no ZIP genes except for OsZIP9 showed change in expression profile in the ospdr7 mutants, which suggested that OsPDR7 maintains cellular Zn homeostasis through regulating OsZIP9 expression. RNA-Seq analysis further revealed a set of differentially expressed genes between the wild type and ospdr7 mutants that allowed us to propose a possible OsPDR7-associated signaling network involving transporters, hormone responsive genes, and transcription factors. Our results revealed a novel transporter involved in the regulation of Zn homeostasis and will pave the way toward a better understanding of the fine-tuning of gene expression in the network of transporter genes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.