Abstract

Bone cancer pain is a complex pain state involving ongoing pain and movement-related pain, which are thought to be caused by different mechanisms. Transient receptor potential vanilloid subfamily 1 (TRPV1) is involved in ongoing pain but not movement-related pain. The purpose of this study was to investigate the role of transient receptor potential vanilloid subfamily 2 (TRPV2) in bone cancer pain. Proportions of TRPV1- and TRPV2-immunoreactive neurons in lumbar dorsal root ganglia innervating the femurs of male mice were examined by using Fluoro-Gold. Mice were intrathecally injected with small interfering RNA (siRNA) against TRPV2 or scrambled siRNA for three consecutive days from day 14 after sarcoma injection into the left femur. In the mice with bone cancer, the number of spontaneous flinches was quantified for assessment of ongoing pain, and limb use and weight bearing were assessed as indications of movement-related pain. Changes in TRPV2 protein levels in dorsal root ganglion were evaluated by Western blotting. We also examined the effects of intrathecal administration of siRNA against TRPV2 or scrambled siRNA on thermal and mechanical sensitivities in normal mice without tumors. The proportions of TRPV1-immunoreactive and TRPV2-immunoreactive neurons were 21% and 22% of neurons in dorsal root ganglia innervating the femur, respectively. Tumor-bearing mice exhibited an increased number of spontaneous flinches and impaired limb use and weight bearing at day 13 after sarcoma injection. TRPV2 protein level in dorsal root ganglia at day 13 was comparable to that at baseline. siRNA against TRPV2 significantly improved limb use and weight bearing but did not affect the number of spontaneous flinches compared to those in the group treated with scrambled siRNA. siRNA against TRPV2 did not affect thermal or mechanical sensitivity in normal mice. The results suggest that TRPV2 is involved in movement-related pain but not ongoing pain in mice with bone cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.