Abstract
Ascorbic acid (also called Vitamin C, VC) strengthens the function of Tets families and directly increases DNA demethylation level to affect myogenic differentiation. However, the precise regulatory mechanism of DNA methylation in chicken myogenesis remains unclear. Results of present study showed that the mRNA expression of MyoD significantly decreased and MyoG and MyHC increased in myoblasts treated with 5 μM 5-azacytidine (5-AZA) and 5 μM VC (p < 0.05). Results also indicated the formation of myotubes was induced by 5-AZA or VC, but this effect was attenuated after knockdown of Tet2. In addition, the protein expression of TET2, DESMIN and MyHC was remarkable increased by the addition of 5-AZA or VC, and the upregulation was inhibited after knockdown of Tet2 (p < 0.05). DNA dot blot and immunofluorescence staining results suggested that the level of 5hmC was significantly increased when treated with 5-AZA or VC, even by Tet2 knockdown (p < 0.05). Moreover, 5-AZA and VC reduced the level of dimethylation of lysine 9 (H3K9me2) and trimethylation of lysine 27 of histone 3 (H3K27me3), and this inhibitory effect was eliminated after Tet2 knockdown (p < 0.05). These data indicated that Tet2 knockdown antagonized the increased levels of 5hmC and H3K27me3 induced by 5-AZA and VC, and eventually reduced myotube formation by modulating the expression of genes involved in myogenic differentiation. This study provides insights that epigenetic regulators play essential roles in mediating the myogenic program of chicken myoblasts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.