Abstract

BackgroundDiabetic encephalopathy(DE) is a neurological complication of diabetes, and its pathogenesis is unclear. Current studies indicate that insulin receptors and downstream signaling pathways play a key role in the occurrence and development of DE. Additionally, CLC-3, a member of the CLC family of anion channels and transporters, is closely related to the secretion and processing of insulin. Here, we investigated the changes and putative roles of CLC-3 in diabetic encephalopathy. ResultsTo this aim, we combined lentivirus and adeno-associated virus gene transfer to change the expression level of CLC-3 in the HT-22 hippocampal cell line and hippocampal CA1. We studied the role of CLC-3 in DE through the Morris water maze test.CLC-3 expression increased significantly in HT-22 cells cultured with high glucose and STZ-induced DE model hippocampus. Moreover, Insulin receptor(IR) and downstream PI3K/AKT/GSK3β signaling pathways were also dysfunctional. After knocking down CLC-3, impaired cell proliferation, apoptosis, IR and the downstream PI3K/AKT/GSK3β signaling pathways were significantly improved. However, when CLC-3 was overexpressed, the neurotoxicity induced by high glucose was further aggravated. Rescue experiments found that through the use of inhibitors such as GSK3β, the PI3K/AKT/GSK3β signaling pathways pathway changes with the use of inhibition, and the expression of related downstream signaling molecules such as Tau and p-Tau also changes accordingly. Using adeno-associated virus gene transfer to knock down CLC-3 in the hippocampal CA1 of the DE model, the IR caused by DE and the dysfunction of the downstream PI3K/AKT/GSK3β signaling pathway were significantly improved. In addition, the impaired spatial recognition of DE was partially restored. ConclusionOur study proposes that CLC-3, as a key molecule, may regulate insulin receptor signaling and downstream PI3K/AKT/GSK3β signaling pathways and affect the pathogenesis of diabetic encephalopathy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.