Abstract
Insulin receptors are highly enriched at neuronal synapses, but whose function remains unclear. Here we present evidence that brief incubations of rat hippocampal slices with insulin resulted in an increased protein expression of dendritic scaffolding protein postsynaptic density-95 (PSD-95) in area CA1. This insulin-induced increase in the PSD-95 protein expression was inhibited by the tyrosine kinase inhibitor, AG1024, phosphatidylinositol 3-kinase (PI3K) inhibitors, LY294002 and wortmannin, translational inhibitors, anisomycin and rapamycin, but not by LY303511 (an inactive analogue of LY294002), and transcriptional inhibitor, actinomycin D, suggesting that insulin regulates the translation of PSD-95 by activating the receptor tyrosine kinase-PI3K-mammalian target of rapamycin (mTOR) signaling pathway. A similar insulin-induced increase in the PSD-95 protein expression was detected after stimulation of the synaptic fractions isolated from the hippocampal neurons. Furthermore, insulin treatment did not affect the PSD-95 mRNA levels. In agreement, insulin rapidly induced the phosphorylation of 3-phosphoinositide-dependent protein kinase-1 (PDK1), protein kinase B (Akt), and mTOR, effects that were prevented by the AG1024 and LY294002. We also show that insulin stimulated the phosphorylation of 4E-binding protein 1 (4E-BP1) and p70S6 kinase (p70S6K) in a mTOR-dependent manner. Finally, we demonstrate the constitutive expression of PSD-95 mRNA in the synaptic fractions isolated from hippocampal neurons. Taken together, these findings suggest that activation of the PI3K-Akt-mTOR signaling pathway is essential for the insulin-induced up-regulation of local PSD-95 protein synthesis in neuronal dendrites and indicate a new molecular mechanism that may contribute to the modulation of synaptic function by insulin in hippocampal area CA1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.