Abstract

BackgroundWe previously reported the results of CRISPR/Cas9 knock-out (KO) of type-I and type-III vitellogenins (Vtgs) in zebrafish, which provided the first experimental evidence on essentiality and disparate functioning of Vtgs at different stages during early development. However, the specific contributions of different types of Vtg to major cellular processes remained to be investigated. The present study employed liquid chromatography and tandem mass spectrometry (LC-MS/MS) to meet this deficit. Proteomic profiles of zebrafish eggs lacking three type-I Vtgs simultaneously (vtg1-KO), or lacking only type III Vtg (vtg3-KO) were compared to those of wild type (Wt) eggs. Obtained spectra were searched against a zebrafish proteome database and identified proteins were quantified based on normalized spectral counts.ResultsThe vtg-KO caused severe changes in the proteome of 1-cell stage zebrafish eggs. These changes were disclosed by molecular signatures that highly resembled the proteomic phenotype of poor quality zebrafish eggs reported in our prior studies. Proteomic profiles of vtg-KO eggs and perturbations in abundances of hundreds of proteins revealed unique, noncompensable contributions of multiple Vtgs to protein and in energy homeostasis. The lack of this contribution appears to have a significant impact on endoplasmic reticulum and mitochondrial functions, and thus embryonic development, even after zygotic genome activation. Increased endoplasmic reticulum stress, Redox/Detox activities, glycolysis/gluconeogenesis, enrichment in cellular proliferation and in human neurodegenerative disease related activities in both vtg1- and vtg3-KO eggs were found to be indicators of the aforementioned conditions. Distinctive increase in apoptosis and Parkinson disease pathways, as well as the decrease in lipid metabolism related activities in vtg3-KO eggs implies compelling roles of Vtg3, the least abundant form of Vtgs in vertebrate eggs, in mitochondrial activities. Several differentially abundant proteins representing the altered molecular mechanisms have been identified as strong candidate markers for studying the details of these mechanisms during early embryonic development in zebrafish and possibly other vertebrates.ConclusionsThese findings indicate that the global egg proteome is subject to extensive modification depending on the presence or absence of specific Vtgs and that these modifications can have a major impact on developmental competence.

Highlights

  • We previously reported the results of CRISPR/Cas9 knock-out (KO) of type-I and type-III vitellogenins (Vtgs) in zebrafish, which provided the first experimental evidence on essentiality and disparate functioning of Vtgs at different stages during early development

  • (unique, up-regulated in KO or down-regulated in KO), and fold-difference in normalized spectral counts (N-SC) between KO and wild type (Wt) eggs for proteins included in this analysis for the vtg1-KO and vtg3-KO experiments are given in Tables S1 and S2, respectively energy metabolism and vitellogenins were significantly lower in vtg1-KO eggs in comparison to Wt eggs

  • Individual proteins that were up-regulated in vtg1-KO eggs (Fig. 1a) were mainly related to protein degradation and synthesis inhibition (23%), cell cycle, division, growth and fate (19%), lectins (19%), and protein synthesis (10%), with the remaining categorized proteins being related to energy metabolism (8%), redoxdetox activities (8%), vitellogenins (6%) and immune functions (5%)

Read more

Summary

Introduction

We previously reported the results of CRISPR/Cas knock-out (KO) of type-I and type-III vitellogenins (Vtgs) in zebrafish, which provided the first experimental evidence on essentiality and disparate functioning of Vtgs at different stages during early development. The different major forms of zebrafish Vtg protein (type I, II and III) are orthologs of the multiple Vtgs present in acanthomorphs (VtgAa, VtgAb and VtgC, respectively). Complete forms of teleost Vtgs consist of the following yolk protein domains; NH2, lipovitellin heavy chain (LvH), phosvitin (Pv), lipovitellin light chain (LvL), β’-component (β’-c), carboxy-terminal component (Ct), COOH [8]. The two diminutive domains, β’-c and Ct, possess a highly conserved array of disulfide bonds that are thought to be important for stabilizing Vtg structure, promoting Vtg dimerization, and enabling Vtg receptor (VtgR) binding. They may persist or be degraded during oocyte maturation. Incomplete forms of Vtg, such as the Vtg in zebrafish, possess both Lv domains (LvH + LvL) but may lack any or all of the remaining YP domains

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call