Abstract

A core promoter is a stretch of DNA surrounding the transcription start site (TSS) that integrates regulatory inputs1 and recruits general transcription factors to initiate transcription2. The nature and causative relationship of DNA sequence and chromatin signals that govern the selection of most TSS by RNA polymerase II remain unresolved. Maternal to zygotic transition (MZT) represents the most dramatic change of the transcriptome repertoire in vertebrate life cycle3-6. Early embryonic development in zebrafish is characterized by a series of transcriptionally silent cell cycles regulated by inherited maternal gene products: zygotic genome activation commences at the 10th cell cycle, marking the midblastula transition (MBT)7. This transition provides a unique opportunity to study the rules of TSS selection and the hierarchy of events linking transcription initiation with key chromatin modifications. We analysed TSS usage during zebrafish early embryonic development at high resolution using cap analysis of gene expression (CAGE)8 and determined the positions of H3K4me3-marked promoter-associated nucleosomes9. We show that the transition from maternal to zygotic transcriptome is characterised by a switch between two fundamentally different modes of defining transcription initiation, which drive the dynamic change of TSS usage and promoter shape. A maternal-specific TSS selection, which requires an A/T-rich (W-box) motif, is replaced with a zygotic TSS selection grammar characterized by broader patterns of dinucleotide enrichments, precisely aligned with the first downstream (+1) nucleosome. The developmental dynamics of the H3K4me3-marked nucleosomes reveals their DNA sequence-associated positioning at promoters prior to zygotic transcription and subsequent transcription-independent adjustment to the final position downstream of zygotic TSS. The two TSS-defining grammars coexist often in physical overlap in core promoters of constitutively expressed genes to enable their expression in the two regulatory environments. The dissection of overlapping core promoter determinants represents a framework for future studies of promoter structure and function across different regulatory contexts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call