Abstract

This paper presents a bioinstrumentation system for the acquisition and pre-processing of surface electromyographic (SEMG) signals, and a knee angle estimation algorithm for control of active transfemoral leg prostheses, using methods for feature extraction and classification of myoelectric signal patterns. The presented microcontrolled bioinstrumentation system is capable of recording up to four SEMG channels, and one electrogoniometer channel. The proposed neural myoelectric controller algorithm is capable of predicting the intended knee joint angle from the measured SEMG signals. The algorithm is designed in three stages: feature extraction, using auto-regressive model and amplitude histogram; feature projection, using self organizing maps; and pattern classification, using a Levenberg-Marquardt neural network. The use of SEMG signals and additional mechanical information such as that provided by the electrogoniometer may improve precision in the control of leg prostheses. Preliminary results are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.