Abstract
The surface electromyographic (SEMG) signal is very convenient for prosthesis control because it is non-invasively acquired and intrinsically related to the user's intention. This work presents a feature extraction and pattern classification algorithm for estimation of the intended knee joint angle from SEMG signals acquired using two sets of electrodes placed on the upper leg. The proposed algorithm uses a combination of time-domain and frequency-domain approaches for feature extraction (signal amplitude histogram and auto-regressive coefficients, respectively), a self-organizing map for feature projection and a Levenberg–Marquardt multi-layer perceptron neural network for pattern classification. The new algorithm was quantitatively compared with the method proposed by Wang et al (2006 Med. Biol. Eng. Comput. 44 865–72), which uses wavelet packet feature extraction, principal component analysis and a multi-layer perceptron neural classifier. The proposed method provided lower error-to-signal percentage and peak error amplitudes, higher correlation and fewer error events. The algorithm presented in this work may be useful as part of a myoelectric controller for active leg prostheses designed for transfemoral amputees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.