Abstract

In portfolio selection problems the items often depend on each other, and their synergies and redundancies need to be taken into account. We consider the knapsack problem in which the objective is modelled as the Choquet integral with respect to a supermodular capacity which quantifies possible synergies. We provide various formulations which lead to the standard linear mixed integer programs, applicable to small and large portfolios. We also study scalability of the solution methods and compare large problems defined with respect to 2-additive capacities which model pairwise interactions, and linear knapsack with respect to the Shapley values of these capacities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.